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What the existing evidence can - and can't - tell us
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Understanding why evidence matters
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Data donation models

Data Download Packages (current) APl-based Data Donation (emerging)

Platform |:> Individual |:> Researcher Platform I:> Secure research environment

* Retrospective archive * Prospective and longitudinal

*  Manual download and upload * Defined extract

* High participant burden * Low participant burden




What we know from psychology — and what public health adds

* Essential for emotions, wellbeing, and lived experience

e Strong experimental tradition (RCTs) in other domains

Psychology

RCTs for social media: rarely feasible or ethical

* Cross-sectional, convenience samples — no population inferences

* Cannot quantify who is exposed to what or causal impact at scale




Why public health & epidemiology are essential for regulation

* Population-level: prevalence, risk ratios, vulnerability profiles

e Causal frameworks

Public health

& .

. ] Equity: effects by age, sex, ethnicity, socioeconomic circumstance, algorithm settings etc
epidemiology

* COl-secure governance (commercial determinants model)

* Produces policy-ready evidence




Building the foundations for data donation

Feasibility and Acceptability of APIl-Based TikTok Data Donation Among UK Adolescents: A
Mixed-Methods Simulation Study
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What we set out to learn

Does the simulation increase What sharing models do youth
willingness to donate? prefer?

Who is more willing to donate before How do youth feel during the
exposure to the simulation? process?

What aspects of the process shape How do we design equitable youth-
willingness to donate? centered consent?

Describing Ethical Choices in Digital-Behavioral-Data-Explorations




Preliminary findings: youth and policy perspectives

Youth Advisory Groups

APl-style flow = easy and usable

Comfort moderate-high; trust conditional

TikTok less personal; Instagram more sensitive
Need simple, clear explanations (what/why /how)

Stronger altruism

Pollcy Advisory Group
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* Strong support for objective exposure data
* Priorities: clarity, transparency, governance
* Need age-appropriate explanations

* Equity concerns in recruitment

* Safeguarding: signposting + support




What this study delivers

* Evidence on feasibility + acceptability of APl-based data donation
* Insights into where youth hesitate & what they need to feel safe

* l|dentification of privacy misunderstandings

* Understanding of equity risks & inclusion challenges

* Guidance for trust-building, clarity & transparency

* Direct input into consent design & user journey

* Foundations for ethical, scalable national deployment



Answering causal questions
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Why observational data can mislead

Result - Prevalence of cancer in coffee drinkers is higher than in non-
drinkers.... really?

Participants

Natural allocation SMOKING

Coffee drinkers more Smoking causes
Exposed Control likely to smoke cancer
Group Group
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Compare outcomes in both groups




Why randomisation works and what we do without it
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What is a confounder?

(Smoking)

Q Measure them accurately
e Adjust for them in the analysis

EXPOSURE OUTCOME
(Coffee) (Cancer)

Causal
Pathway



Directed Acyclic Graphs

DAG illustrating the hypothesised relationship between social media
use at 14 years and alcohol use at 17 years
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Why not just do an RCT?

Unethical to expose youth to harmful content
Personalised algorithms prevent true randomisation
Recruitment biases limit representativeness
Low-base-rate harms require population scale data

Trials move too slowly for fast-changing platforms

Findings may not reflect real-world digital environments




What is a target trial?

Target Trials mimic the design of an RCT

DAGs give us valid confounder control

Target trial emulation

Design Apply it Data donation gives us exposure detail
the RCT to real
we wish |:>

world
we could

data

run
Causal
evidence

Cohorts provides population level data

TrAnsparent ReportinG of studies Emulating a Target trial (TARGET)

Guideline



From target trial design to causal effect estimates

Target trial Estimation strategy Assumptions & outputs

Target trial specified * Weighting-based Causal assumptions

* Eligibility * QOutcome-model * Consistency

* Exposure & comparator * Doubly robust * Positivity

* Time zero & follow-up * Extensions (fixed effects, * Conditional exchangeability

* Qutcome sensitivity analyses) Outputs

* Estimand: ATE (>CATE) * Interpretable causal effect
estimates

Design first. Estimation second




DIGITAL DETERMINANTS OF
HEALTH HUB

RESEARCH | POLICY | PRACTICE




Does exposure to alcohol, drug
use, and antisocial behaviour
content on TikTok actually cause
changes in young people’s real-
world behaviour?



Delivering causal evidence
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From insight to impact
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Thank you! Any Questions?

@ Email: amritkaur.purba@mrc-cbu.cam.ac.uk

Digital Determinants of
Health Hub LinkedIn

linkedin.com /in /amrit-kaur-purba-/
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